skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quattrini, Andrea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The symbiosis between clownfishes (or anemonefishes) and their host sea anemones ranks among the most recognizable animal interactions on the planet. Found on coral reef habitats across the Indian and Pacific Oceans, 28 recognized species of clownfishes adaptively radiated from a common ancestor to live obligately with only 10 nominal species of host sea anemones. Are the host sea anemones truly less diverse than clownfishes? Did the symbiosis with clownfishes trigger a reciprocal adaptive radiation in sea anemones, or minimally, a co-evolutionary response to the mutualism? To address these questions, we combined fine- and broad-scale biogeographic sampling with multiple independent genomic datasets for the bubble-tip sea anemone,Entacmaea quadricolor—the most common clownfish host anemone throughout the Indo-West Pacific. Fine-scale sampling and restriction site associated DNA sequencing (RADseq) throughout the Japanese Archipelago revealed three highly divergent cryptic species: two of which co-occur throughout the Ryukyu Islands and can be differentiated by the clownfish species they host. Remarkably, broader biogeographic sampling and bait-capture sequencing reveals that this pattern is not simply the result of local ecological processes unique to Japan, but part of a deeper evolutionary signal where some species ofE. quadricolorserve as host to the generalist clownfish speciesAmphiprion clarkiiand others serve as host to the specialist clownfishA. frenatus. In total, we delimit at least five cryptic species inE. quadricolorthat have diversified within the last five million years. The rapid diversification ofE. quadricolorcombined with functional ecological and phenotypic differentiation supports the hypothesis that this may represent an adaptive radiation in response to mutualism with clownfishes. Our data indicate that clownfishes are not merely settling in locally available hosts but recruiting to specialized host lineages with which they have co-evolved. These findings have important implications for understanding how the clownfish-sea anemone symbiosis has evolved and will shape future research agendas on this iconic model system. 
    more » « less
  2. Abstract The mutualism between clownfishes (or anemonefishes) and their giant host sea anemones are among the most immediately recognizable animal interactions on the planet and have attracted a great deal of popular and scientific attention [1-5]. However, our evolutionary understanding of this iconic symbiosis comes almost entirely from studies on clownfishes— a charismatic group of 28 described species in the genusAmphiprion[2]. Adaptation to venomous sea anemones (Anthozoa: Actiniaria) provided clownfishes with novel habitat space, ultimately triggering the adaptive radiation of the group [2]. Clownfishes diverged from their free-living ancestors 25-30 MYA with their adaptive radiation to sea anemones dating to 13.2 MYA [2, 3]. Far from being mere habitat space, the host sea anemones also receive substantial benefits from hosting clownfishes, making the mutualistic and co-dependent nature of the symbiosis well established [4, 5]. Yet the evolutionary consequences of mutualism with clownfishes have remained a mystery from the host perspective. Here we use bait-capture sequencing to fully resolve the evolutionary relationships among the 10 nominal species of clownfish-hosting sea anemones for the first time (Figure 1). Using time-calibrated divergence dating analyses we calculate divergence times of less than 25 MYA for each host species, with 9 of 10 host species having divergence times within the last 13 MYA (Figure 1). The clownfish-hosting sea anemones thus diversified coincidently with clownfishes, potentially facilitating the clownfish adaptive radiation, and providing the first strong evidence for co-evolutionary patterns in this iconic partnership. 
    more » « less
  3. Abstract Numerous genomic methods developed over the past two decades have enabled the discovery and extraction of orthologous loci to help resolve phylogenetic relationships across various taxa and scales. Genome skimming (or low‐coverage genome sequencing) is a promising method to not only extract high‐copy loci but also 100s to 1000s of phylogenetically informative nuclear loci (e.g., ultraconserved elements [UCEs] and exons) from contemporary and museum samples. The subphylum Anthozoa, including important ecosystem engineers (e.g., stony corals, black corals, anemones, and octocorals) in the marine environment, is in critical need of phylogenetic resolution and thus might benefit from a genome‐skimming approach. We conducted genome skimming on 242 anthozoan corals collected from 1886 to 2022. Using existing target‐capture baitsets, we bioinformatically obtained UCEs and exons from the genome‐skimming data and incorporated them with data from previously published target‐capture studies. The mean number of UCE and exon loci extracted from the genome skimming data was 1837 ± 662 SD for octocorals and 1379 ± 476 SD loci for hexacorals. Phylogenetic relationships were well resolved within each class. A mean of 1422 ± 720 loci was obtained from the historical specimens, with 1253 loci recovered from the oldest specimen collected in 1886. We also obtained partial to whole mitogenomes and nuclear rRNA genes from >95% of samples. Bioinformatically pulling UCEs, exons, mitochondrial genomes, and nuclear rRNA genes from genome skimming data is a viable and low‐cost option for phylogenetic studies. This approach can be used to review and support taxonomic revisions and reconstruct evolutionary histories, including historical museum and type specimens. 
    more » « less